Testing of GE Healthcare’s Silicon-based Photon Counting CT Begins at Karolinska Institutet

Karolinska Institutet and MedTechLabs have recently begun testing the works-in-progress first silicon-based, photon counting CT system in preparation for a new pilot study of the technology. The GE Healthcare device includes the company’s patented, novel Deep Silicon detectors for photon counting CT, which has the potential to deliver outstanding spatial resolution without compromising count rate or spectral resolution – all with the goal of helping clinicians realize the full potential of photon counting CT.

The clinical evaluation comes nearly one year after GE Healthcare’s acquisition of Prismatic Sensors AB, a Swedish start-up specializing in silicon detectors for photon counting CT. Unlike other photon counting CT detector materials, silicon has a number of advantages including its purity, abundance and broad manufacturing infrastructure. Using a patented, novel approach that positions the silicon sensors “edge on,” GE Healthcare’s Deep Silicon detectors – which are made of pure silicon – can handle the very high photon flux (quantity of information) from the CT’s intense X-ray tubes. These silicon sensors absorb very high energy photons fast enough to count hundreds of millions of CT photons per second, which can create much crisper images than standard CT systems.

“While the system’s cover may look familiar, its potential capabilities are totally different – enabling us to image small blood vessels and vascular pathologies as well as see malignant changes at an earlier stage when treatment can be more effective,” explains Staffan Holmin, professor at Karolinska Institutet, consultant at ME Neuroradiology at Karolinska University Hospital, and clinical evaluation leader responsible for testing and optimizing the technology. “I’ve been fortunate to work with this technology for several years – back when it was being developed with Prismatic Sensors – and believe it has the potential to improve diagnostics and consequently the therapeutic outcomes for a whole range of conditions. CT scanners are standard in hospitals today, but this new apparatus represents a huge advancement for the future. It’s a real ‘quantum leap.’”

Photon counting CT has the promise to further improve the capabilities of traditional CT, including the visualization of minute details of organ structures, improved tissue characterization, more accurate material density measurement (or quantification) and lower radiation dose. As a result, photon counting CT has the potential to significantly increase imaging performance for oncology, cardiology, neurology, and many other clinical CT applications.

“The potential of this technology is great, and we are excited to assist with its continued development,” says Clara Hellner, chair of MedTechLabs. “We established our CT lab in BioClinicum, Karolinska University Hospital, for this exact purpose: to enable clinical studies to be carried out that verify the new technology now and into the future. This pilot study marks an exciting first step in the evolution of photon counting CT with new, breakthrough detector technology – which has the potential to someday benefit millions of patients worldwide.” 

Together, Karolinska Institutet and MedTechLabs will lead the world’s first clinical evaluation to test and optimize GE Healthcare’s photon counting CT with Deep Silicon detectors. The study will compare participants' images obtained using the photon counting CT system with Deep Silicon to those taken using a standard CT. It will also provide valuable imaging data that will be used to optimize image processing. 

Following this study, the research group plans to conduct subsequent evaluations with a larger number of participants for the further optimization of the image quality as well as additional research and development focused on pattern recognition (AI), data management and the optimization of visual information to meet radiologist needs when assessing disease states for different parts of the body.

“We are on the cusp of something revolutionary in healthcare,” shares Jean-Luc Procaccini, President & CEO, Molecular Imaging & Computed Tomography, GE Healthcare. “Medical technology providers must develop innovative solutions that make healthcare more human by breaking down barriers so clinicians can work at the top of their game, healthcare systems can operate more efficiently, and patients get the best and most precise care possible. While still in development, we believe our photon counting CT with Deep Silicon detectors has the potential to do just that – providing clinicians and patients with more information sooner to help reduce stress and improve patient outcomes. We are confident in the direction we are going with our partners and believe this technology has the potential to be a substantial step forward for CT imaging and patient care.” 

© Anderson Publishing, Ltd. 2024 All rights reserved. Reproduction in whole or part without express written permission Is strictly prohibited.